

Plot No. 2, Knowledge Park-III, Greater Noida (U.P.) -201306

POST GRADUATE DIPLOMA IN MANAGEMENT (2024-26) END TERM EXAMINATION (TERM -III)

Subject Name	Data Modelling	Time: 02.00 hrs
Sub. Code:	PGIT33	Max Marks: 40

Note: All questions are compulsory. Section A carries 12 marks: 6 questions of 2 marks each, Section B carries 18 marks having 3 questions (with internal choice question in each) of 6 marks each and Section C carries 10 marks one Case Study having 2 questions of 5 marks each. 1. All questions are compulsory.

2. All questions are to be solved using MS-Excel on an individual Computer/LAPTOP.

3. EACH AND EVERY QUESTION NEEDS TO BE SOLVED ON THE DEFINED INDIVIDUAL WORKSHEETSHEET. Each sheet is renamed with the Question numbers. 4. Student are supposed to save the file using Room No., Admission No., full name and section: example (PGDM24123_Rajesh_B).

CO-1 Understand and apply Data Modelling techniques for decision-making in business

CO-2 Apply Optimization techniques for resolving business problems

CO-3 Analyze the data models for validity and feasibility in business.

CO-4 Create data models and simulations to solve business problems

CO-5 Evaluate and analyze time series data

<u>SECTION - A</u>						
Attempt all questions. All questions are compulsory. 2×6 :				= 12 Ma	= 12 Marks	
Questions					Bloom's	
					Level	
Q. 1: (A). is the Excel feature used to determine how different						
input values impact a specific output						
Q. 1: (B). The function in Excel is typically used to measure						
the degree of asyn	nmetry in stock retu	arn distributions.				
Q. 1: (C). Excel's tool can solve optimization problems by						
adjusting variables to minimize or maximize a specified objective						
0.1: (D) . mean is particularly appropriate when averaging						
ratios or rates like	price-to-earnings (P/E) ratios or spe	eeds.			
O. 1: (E). The analysis that examines the effect of changing multiple variables						
simultaneously is called analysis in Excel.						
O. 1: (F). In financial data, the mean is most suitable for						
calculating average annual growth rates.						
SECTION – B						
All questions are compulsory (Each question has an internal choice. Attempt anyone (either A or						
B) from the internal choice) $6 \times 3 = 18$ Marks						
Questions					Bloom's	
					Level	
Q. 2: (A). The Profit of a Business is calculated as given in sheet "Q2". Create						
a Three Scenarios which estimate the profit as follows:						
Particular	Best	Average	Worst	CO2		
Revenue	200000	100000	80000			
Raw Material	70000 45000 38000					

	Ĩ							
Wages and Salaries	f	40000	25	5000	25000			
Admin Ex	р	30000	20	0000	22000			
Or								
Q. 2: (B). Calculate the Skewness, Kurtosis, standard deviation and variance for the student scores in maths and History(Sheet:Q2(B)) and interpret the same.								
Q. 3: (A). Use simplex method to solve the following Linear Programming Problem:								
Maximize	e Z = 10	7a + b + 2	2c				coo	
Subject to:							CO3	
6a	+b-c <	<=3						
16	a + 3b -	- 6c <=5						
3a -	– b -c <	=0						
			Or					
Q. 3: (B). 7	The Dai	ly closin	g price of a sto	ock is given. S	moothen the	price		
series using	, expon	ential sm	oothening, ke	ep the dampen	ing factor (a	lpha) =		
0.2, and cre	ate a re	elevant cl	nart for closing	g price and exp	onential ser	ies.		
Q. 4: (A). The Actual Home Prices and Predicted Home Prices for Interest rate as Independent variable are given. Calculate Error, Error^2, MSE and RMSE for the data						CO5		
Q. 4: (B). Explain various components of a time series and their applications						blications		
D				<u>SECTION - C</u>	<u> </u>		40.34	
Read the case and answer the questions 5×02					= 10 M	arks		
Questions						CO	Bloom's	
						Level		
Q. 5: Case Study:								
Ramesh plans to start a business venture, for which the expected data is as								
follows:	follows:							
	Reven	ue	Raw	Wages	Admin	Advt		
			Material		Exp	and		
						Sales		
						Exp.		
Mean	10,00,	000	5,00,000	2,00,000	1,00,000	150,000	CO4	
Std Dev	4,00,0	00	3,00,000	1,00,000	60,000	90,000		
Questions:								
Q. 5: (A). What is Monte-Carlo Simulation and explain its applications in								
Business								

Q. 5: (B). Apply Monte-Carlo Simulation to the given case and calculate the probability of getting a profit of more than Rs. 100,000 by applying 10 runs of thousand simulations each.

Kindly fill the total marks allocated to each CO's in the table below:

COs	Question No.	Marks Allocated
CO1	1	12
CO2	2	6
CO3	3	6
CO4	5	10
CO5	4	6

(Please ensure the conformity of the CO wise marks allocation as per your TLEP.) Blooms Taxonomy Levels given below for your ready reference:

L1= Remembering, L2= Understanding, L3= Apply, L4= Analyze, L5= Evaluate, L6= Create